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ABSTRACT 

Background: Lipids are involved in the interaction between viral infection and the host 

metabolic and immunological responses. Several studies comparing the lipidome of 

COVID-19-positive hospitalized patients vs. healthy subjects have already been 

reported. It is largely unknown, however, whether these differences are specific to this 

disease. The present study compared the lipidomic signature of hospitalized COVID-19-

positive patients with that of healthy subjects, as well as with COVID-19-negative 

patients hospitalized for other infectious/inflammatory diseases.  

Methods: We analyzed the lipidomic signature of 126 COVID-19-positive patients, 45 

COVID-19-negative patients hospitalized with other infectious/inflammatory diseases 

and 50 healthy volunteers. A semi-targeted lipidomics analysis was performed using 

liquid chromatography coupled to mass spectrometry. Two-hundred and eighty-three 

lipid species were identified and quantified. Results were interpreted by machine 

learning tools.  

Results: We identified acylcarnitines, lysophosphatidylethanolamines, arachidonic acid 

and oxylipins as the most altered species in COVID-19-positive patients compared to 

healthy volunteers. However, we found similar alterations in COVID-19-negative 

patients who had other causes of inflammation. Conversely, lysophosphatidylcholine 

22:6-sn2, phosphatidylcholine 36:1 and secondary bile acids were the parameters that 

had the greatest capacity to discriminate between COVID-19-positive and COVID-19-

negative patients.  

Conclusion: This study shows that COVID-19 infection shares many lipid alterations 

with other infectious/inflammatory diseases, and which differentiate them from the 

healthy population. The most notable alterations were observed in oxylipins, while 

alterations in bile acids and glycerophospholipis best distinguished between COVID-19-

positive and COVID-19-negative patients. Our results highlight the value of integrating 

lipidomics with machine learning algorithms to explore the pathophysiology of COVID-

19 and, consequently, improve clinical decision making. 
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1. Introduction 

To date, the coronavirus disease 2019 (COVID-19) pandemic has, according to 

data from the WHO [1], affected 349 million people worldwide, causing 5.5 million 

deaths. Knowledge of the risk factors and symptoms would help curb infection and 

transmission rates.  Developing screening tests and effective therapies have been the 

urgent issues that most studies have addressed i.e. most studies have been directed 

toward describing the clinical and epidemiological characteristics of COVID-19 [2-6] or 

have investigated the "cytokine storm" associated with the infection, with the urgent 

objective of combating the pandemic in the short term [7,8] while bearing in mind that 

COVID-19 will not be eradicated easily, and that populations would need to 

accommodate for the infection in the future. Indeed, although vaccination campaigns 

are progressing effectively in financially well-established countries, infection continues 

to increase rapidly in many countries that have poor health infrastructures. With 

extensive infection and re-infection, there is potential for new variants of SARS-CoV-2 

which would keep world-wide infection rates high. Hence, medium and long-term 

research efforts aimed at developing strategies for identifying and treating COVID-19 

also remain correspondingly high. SARS-CoV-2 infection produces dramatic changes in 

the metabolism of the host cell, including the concentration and composition of 

different lipid species [9,10]. Lipids combine with thousands of metabolites and 

hundreds of specific pathways in support of the life-cycle of an organism [11]. As such, 

it is not surprising that these compounds are involved in the interplay between viral 

infection and the host’s response [10]. Viruses are internalized into cells through 

protein-lipid interactions [12,13] and are externalized via lipid vesicles [14]. 

Interactions between viruses and the organism alter mitochondrial metabolism and 

the microbiota [15-17]. Further, lipids are bioactive molecules in the organism’s 

immune system and small differences in their chemical structures can have a strong 

impact on the immune response [18,19]. For example, eicosanoids have signaling 

functions that depend on the location or orientation of a hydroxyl group in the fatty 

acid chain, small alterations in which result in anti- or pro-inflammatory stimuli [20]. 

Oxidative stress triggered by infection profoundly alters the lipid composition of the 

host cells and circulation. Oxidized lipids are produced via specific biosynthetic 

pathways and involve the direct action of free radical species on polyunsaturated fatty 
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acids. The resultant interference with the functions of various enzymes has significant 

biological consequences [21] which are difficult to quantify metabolically. Fortunately, 

the advent of powerful tools of metabolomics techniques in combination with 

bioinformatics and artificial intelligence are of considerable help in understanding the 

interactions between infectious processes and the metabolic responses of the host 

[19-23]. Studies comparing the lipidome of COVID-19-positive patients vs. healthy 

subjects have been reported, and distinctive lipid species have been identified [10]. 

However, there is a paucity of information regarding the specificity of these 

measurements, i.e. whether variations in circulating levels of the species identified are 

characteristic of the COVID-19 infection, or whether they can be observed in other 

infectious or inflammatory diseases, as well. Our study was aimed at identifying 

alterations in the serum lipidome of patients with COVID-19 infection, the aim being to 

evaluate the relationships between the alterations and the disease and. as such, to 

identify potential biomarkers that would help in clinical decisions in diagnosis and 

treatment. 

 

2. Materials and methods 

2.1. Study design and participants 

We performed a retrospective post-hoc cohort study in 126 patients 

hospitalized for COVID-19 infection between March and October 2020 in the 

Department of Internal Medicine, or in the Intensive Care Unit (ICU) of our Institution. 

Inclusion criteria into the present study were: ≥18 years of age and a positive PCR 

result for COVID-19 obtained within 24 hours before the blood sample was drawn for 

the study. Exclusion criteria were: having a life expectancy ≤24 hours, impaired liver 

function, or pregnancy. We also analyzed samples from 45 COVID-19-negative patients 

hospitalized with diseases having an infectious/inflammatory component. These 

samples, collected in 2019, belonged to a previous prospective study in patients with 

urinary catheter-related infection. A detailed description of these patients has been 

published [24]. For the purposes of the present study, we selected a subgroup with a 

distribution of age and sex to match, as closely as possible, the COVID-19-positive 

patients. As a control group, we analyzed samples from 50 healthy volunteers who had 

participated in an epidemiological study, the details of which have already been 
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reported [25]. The subjects had no clinical or biochemical evidence of diabetes, cancer, 

kidney failure, liver disease, or neurological disorders. Serum samples from all 

participants were stored in our Biobank at –80ºC until the time of batched analyses. 

We recorded clinical and demographic data and calculated the McCabe score as an 

index of clinical prognosis [26] and the Charlson index as a way of categorizing patient 

comorbidities [27]. This study was approved by the Comitè d’Ètica i Investigació en 

Medicaments (Institutional Review Committee) of the Institut d’Investigació Sanitària 

Pere Virgili (Resolution CEIM 040/2018, modified on April 16, 2020). 

 

2.2. Lipidomics analyses 

A total of 283 lipid species were analyzed by semi-targeted lipidomics. This 

approach differs from targeted lipidomics in that it does not use a specific standard for 

each of the 283 lipid species analyzed but, instead, selects a small sample set of 

standards from each of the different lipid classes. The calibration curves so obtained 

were used for the quantification of their corresponding lipid species. The rest of the 

compounds were quantified using a standard that belongs to the same lipid class and 

has a similar chemical structure. In addition, labeled internal standards were used to 

correct the response of each detected lipid species.  The standards used were the 

following: For acylcarnitine determination, L-carnitine, O-acetyl-L-carnitine, O-

propionyl-L-carnitine, O-butyryl-L-carnitine, O-isovaleryl-L-carnitine, O-octanoyl-L-

carnitine, O-myristoyl-L-carnitine, O-palmitoyl-L-carnitine, O-glutaryl-L-carnitine, O-3-

hydroxyisovaleryl-L-carnitine, O-dodecanoyl-L-carnitine, O-octadecanoyl-L-carnitine, 

and O-3-DL-hydroxypalmitoyl-L-carnitine. Internal standards were trimethyl-D9, N-

methyl-D3, N,N,N,-methyl-D9, and N-methyl-D9 (Cambridge Isotope Laboratories, 

Andover, MA, USA). For polar lipids determination, lipid standards were 

lysophosphatidylethanolamine (LPE) 16:0, lysophosphatidylcholine (LPC) 18:0, 

dehydroepiandrosterone 3-sulfate, cortisol, cholic acid, taurocholic acid, deoxycholic 

acid, arachidonic acid, and 15-hydroxyeicosatetraenoic acid (15-HETE), and the set of 

labeled lipid as internal standards were LPC 18:1-d7, cholic acid-d4, taurocholic acid-d5, 

arachidonic acid-d8, and myristic acid-d27 (Avanti Polar Lipids, Alabaster, AL, USA).  

Lastly, standards for the determination of non-polar lipids were LPC 18:0, 

phosphatidylcholine (PC) 32:0, sphingomyelin (SM) 36:1, diglyceride (DG) 36:0, 
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triglyceride (TG) 52:3, and cholesteryl ester (CE) 16:0, and the set of labeled lipid 

internal standards was the SPLASH mixture from Avanti Polar Lipids. Analytical 

methods have been previously reported by our research group [28,29]. Briefly, 

acylcarnitines and polar lipids were extracted with methanol and non-polar lipids were 

extracted with a mixture of tert-buthyl ether and methanol (1:2 v/v) with 0.5% acetic 

acid. The extracts were injected into a 1290 Infinity ultra-high-pressure liquid 

chromatograph (UHPLC) coupled to a 6550 quadrupole-time-of-flight mass 

spectrometer (QTOF) using a dual jet stream electrospray ionization (ESI) source 

(Agilent Technologies, Santa Clara, CA, USA). The system was equipped with a binary 

pump (G4220A) and an autosampler (G4226A) thermostat-controlled at 4ºC. 

Acylcarnitines were separated in a Kinetex 2.6 m Polar C18, 100 Å, 150 x 2.1 mm 

column, (Phenomenex, Torrance, CA, USA). The mobile phase consisted of A: 99.9% 

water + 0.1% formic acid; B: 99.9% methanol with 0.1% formic acid, at a flow rate of 

0.4 mL/min. The gradient used was as follows: 0 min, 0% B; 11 min, 100% B, 13 min, 

0%B, 16.5 min, 0%B. Polar lipids were separated in an Acquity BEH C18 column 1.7 μm, 

2.1 mm × 100 mm (Waters Corp., Milford, MA, USA). The mobile phase consisted of A: 

water + 0.05% formic acid; B: acetonitrile + 0.05 formic acid. The flow rate was 0.3 

mL/min. The gradient used was as follows: 0 min, 2% B; 2 min, 50% B; 10 min, 98% B; 

from 10 to 13 min, gradient was maintained at 98% B for column cleaning; 14 min, 2% 

B followed by a post-run of 4 min under the same conditions for column re-

conditioning. Non-polar lipids were separated in a Kinetex EVO C18 column 2

mm x 100 mm (Phenomenex). The mobile phase consisted of A: water, B: methanol 

and C: 2-propanol containing 10 mM ammonium formate +0.1% formic acid, at a flow 

rate of 0.6 mL/min. The gradient used was as follows: 0 min, 10% B, 40% C; 0.5 min, 

10% B, 50% C; 1.5 min, 9.5% B, 52.5% C; 1.6 min, 7.5% B, 63.5% C; 5 min, 7% B, 66.5% C; 

5.1 min, 4% B, 82.5% C; 7.5 min, 3.5% B, 85% C; 9 min, 3.5% B, 85% C; 9.5 min, 0% B, 

100% C; 11.5 min, 0% B, 100% C; 11.6 min, 10% B, 40% C. A post run of 2 min in initial 

conditions was used for column conditioning. 

Metabolites were quantified using Mass Hunter Quantitative Analysis B.07.00 

(Agilent Technologies). Lipid characterization was done by matching their accurate 

mass and isotopic distributions to the Metlin-PCDL database (Scripps Research 
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Institute, La Jolla, CA, USA) allowing a mass error of 10 ppm and a score higher than 80 

for isotopic distribution.  

 

2.3. Statistical analyses 

Statistical assessments were performed with the R program (RStudio version 

4.0.5). The MetaboAnalystR package was used to generate scores and loading plots 

and included False Discovery Rates (FDR), Volcano plots, Principal Component Analysis 

(PCA), Partial Least Square Discriminant Analysis (PLS-DA), and hierarchically clustered 

heatmaps [30]. To evaluate the diagnostic accuracy of different combinations of lipids, 

we constructed a Monte Carlo cross validation model that combined from 5 to 100 

random variables, and subsequently calculated the area under the curve of the 

Receiver Operating Characteristics (ROC) curves, and confusion matrices [31]. The 

TableOne package was used to generate mean and standard deviation of all lipid 

concentrations [32]. The R-commands employed are shown as Supplementary 

Methods (Supplementary_Materials.docx file). 

 

3. Results 

3.1. Clinical characteristics of the studied groups 

The clinical characteristics of all participants are shown in Table 1. COVID-19-

negative patients were significantly older and consumed less alcohol than the control 

group. COVID-19-positive patients had a lower frequency of smoking habit, alcohol 

intake, type 2 diabetes mellitus, chronic kidney disease and cancer than COVID-19-

negative patients. The McCabe score and the Charlson index indicated that COVID-19-

positive patients were, in general, less severe than COVID-19-negative patients. 

 

3.2. Acylcarnitines, arachidonic acid and oxylipins: The common lipid signature of 

COVID-19-positive and COVID-19-negative patients 

Numerical results are shown in Supplementary Tables 

(Supplementary_Tables.xls file). Volcano plots identified changes in the concentrations 

of 107 species comparing the COVID-19-positive patients vs. the healthy volunteers 

and 108 species comparing the COVID-19-negative patients vs. the healthy volunteers. 

The species with the greatest changes were O-octanoyl-R-carnitine (CAR 8:0) and LPE, 
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which were increased, and the oxylipins 9/13-hydroxyoctadecadienoic acid (9-

HODE/13-HODE) and 15-HETE which were decreased (Fig. 1A). The heatmap clustering 

algorithm grouped the lipids into four blocks: The first three blocks were constituted 

mainly by oxylipins and the fourth by bile acids (Fig. 1B). PCA and PLS-DA completely 

segregated the populations of healthy volunteers from COVID-19 patients (either 

positive or negative), and the Variable Importance in Projection (VIP) score identified 

9-HODE/13-HODE and 15-HETE as the most effective lipids in distinguishing the groups 

of patients from the healthy volunteers (Fig. 1C and D). We did not observe any 

significant differences between the position of the fatty acid chain of the 

lysophospholipids (LPC and LPE) in the different study groups (Supplementary Fig. 1). 

The enrichment analysis showed an alteration of the pathways of fatty acid 

synthesis, the metabolism of arachidonic, linoleic and linolenic acids (precursors of 

-oxidation of fatty acids in COVID-19-positive or COVID-19-

negative patients compared to control subjects (Fig. 2A and B).  

Monte Carlo models were generated to help identify those species that could 

be useful as biomarkers of infectious/inflammatory processes (whether COVID-19-

positive or not). The models initially combined five randomly chosen lipid species and 

determined the area under the curve (AUC) for each from the combined ROC curve. 

The numbers of variables were progressively increased to 100 in 6 different models. In 

all instances, the analyses of the AUC-ROC curves were >0.98 (Fig. 3A). The 100-

variable model was chosen to construct a confusion matrix, which correctly classified 

all but 1 of the patients (Fig. 3B). The algorithm identified oxylipins as the most 

relevant variables in the construction of the model. Other species identified were 

carnitines and lysophospholipids (Fig. 3C). From among these species, we chose 

arachidonic acid for further analysis because: its physiological and pathological 

importance is high; it is one of the main precursors of oxylipin synthesis; its internal 

standard is commercially available so its quantification is facilitated. Figure 3D shows 

serum concentrations of arachidonic acid being significantly decreased in COVID-19-

positive as well as COVID-19-negative patients. Moreover, the AUCs of the ROC curves 

for arachidonic acid were >0.97 in the discrimination of both patient groups from the 

control group (Fig. 3E). 
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3.3. Phosphatidylcholines and secondary bile acids are specifically altered in COVID-19 

positive patients 

Volcano plots identified changes in the concentrations of 86 species comparing 

the COVID-19-positive vs. COVID-19-negative patients (78 increased and 8 decreased in 

COVID-19-positive patients). The species that presented greatest changes were 

phosphatidylcholine 36:5 (PC 36:5), long-chain triglycerides (TG) 54:2 and 54:7 which 

were increased, and carnitine (CAR) 18:2, epoxystearic acid, and glycodeoxycholic acid, 

that were decreased in COVID-19-positive patients (Fig. 4A). PCA and PLS-DA showed 

separation but with a certain degree of overlap (Fig. 4B). The most relevant 

parameters in the discrimination between both groups of patients were the secondary 

bile acids deoxycholic acid and ursodeoxycholic/hyodeoxycholic acid (Fig. 4C). The 

heatmap clustered TG and PC values into two different groups, although with very 

similar behavior: they tended to be relatively more concentrated in COVID-19-positive 

patients than in the COVID-19-negative patients (Fig. 4D). 

As in the previous section (described above), we generated Monte Carlo 

models to ascertain whether there was a biological marker that effectively 

discriminated between COVID-19-positive and COVID-19-negative patients 

(Supplementary Fig. 2A and B). The approach identified a variety of compounds, the 

concentrations of which differed in positive and negative patients (Supplementary Fig. 

2C), but the AUC of even the best ROC curve did not exceed 0.8 (Supplementary Fig. 

3D and 3E). Because the discriminatory ability of the Monte Carlo approach was 

modest, we manually tested the individual discriminatory ability of each of the 

variables; an AUC of 0.95 was obtained with the combination of LPC22:6-sn2 and 

PC36:1 (Fig. 4E). 

 

3.4. Lipid profile in COVID-19-positive patients was related to specific comorbidities but 

not to clinical prognosis or survival  

When we analyzed the lipid profile in relation to individual comorbidities, we 

observed several important differences. For example, patients with cancer had 

significantly higher levels of most lipid series than those patients without cancer, while 

patients with chronic lung disease had, in general, lower lipid levels (Fig. 5A). However, 

this analysis should be viewed with caution since most of the patients had more than 
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one comorbidity and, as such, we prefer not to speculate on the influence of their 

interactions. To evaluate whether alterations in the lipid profile could be used to 

predict disease severity or mortality we applied K-means clustering in order to group 

patients according to their similarities within the circulating lipidome (Fig. 5B). All the 

distributions were dispersed and overlapped to a considerable extent, indicating that 

there was no significant relationship between lipid profile and survival, admission to 

the ICU, or the Charlson and McCabe indices. 

We did not find any significant influence of sex differences or potentially 

inflammatory cardiometabolic comorbidities (cardiovascular disease or type 2 diabetes 

mellitus) on the lipidomic signature neither in COVID-19-positive nor in COVID-19-

negative patients. Both PCA and heatmap clustering showed a considerable overlap in 

groups (Supplementary Figures 3 and 4).  

 

4. Discussion 

When we compared the results of the COVID-19-positive patients with the 

healthy volunteers, the most relevant findings were the increases in the 

concentrations of CAR 8:0 and LPE, and the decrease in the concentrations of 9/13-

HODE and 15-HETE. The enrichment analysis identified alterations in the synthesis 

pathway of arachidonic acid from fatty acids. The measurement of the serum levels of 

arachidonic acid showed a high level of discrimination between patients and control 

subjects. Increased serum CAR 8:0 concentrations in COVID-19-positive patients may 

be a reflection of mitochondrial dysfunction. Acylcarnitines are markers of 

mitochondrial function; specifically for β-oxidation of fatty acids. They are synthesized 

via carnitine palmitoyltransferase 1 that ferries fatty acids into the mitochondrial 

matrix. Incomplete fatty acid oxidation results in elevated acylcarnitine concentrations 

[33]. Indeed, our enrichment analysis suggested alterations in the pathways of 

mitochondrial β-oxidation of very-long-chain and medium-chain fatty acids. The 

mitochondrial long-chain fatty acids β-oxidation is impaired in several viral infections, 

including COVID-19 [34], while β-oxidation defects are mirrored by changes in the 

concentration of long-chain acylcarnitines. The accumulation of acylcarnitines within 

the lung has been reported to be a risk factor for acute lung injury due to their 

inhibition of pulmonary surfactants [35].  
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 Fatty acids play essential roles in viral infection because they provide building 

blocks for membrane synthesis during virus proliferation, and also because fatty acids 

can be converted to many lipid mediators such as the eicosanoids, which play 

significant roles in immune and inflammatory responses [36]. We observed decreased 

serum concentrations of several fatty acids including arachidonic, stearic, lauric, and 

palmitic acid in COVID-19-positive patients compared with healthy individuals. This 

decrease may be related to enhanced synthesis pathways of viral membrane 

phospholipids. Among the fatty acids, the most marked alteration that we observed 

was a highly significant decrease in serum arachidonic acid concentration. This finding 

confirms an earlier study [37]. This may be relevant from a pathophysiological point of 

view in that arachidonic acid is a potent antiviral agent participating in the inactivation 

of enveloped viruses, including SARS-CoV-2 [10]. A decrease in the concentrations of 

this lipid would be detrimental to the host, and would encourage the survival of the 

invading virus. A further study reported that exogenous supplementation with 

arachidonic acid inhibited HcoV-229E virus replication in cultured cells [38]. The 

decrease in circulating levels of fatty acids was associated with a decrease in the 

concentrations of 9/13-HODE and 15-HETE; oxylipin products of oxidation of linoleic 

acid and arachidonic acid, respectively. We would have expected to find increased 

serum oxylipin levels because their concentrations tend to increase with oxidative 

stress and because they are mediators of the inflammatory response [39]. However, an 

early study showed that high levels of oxylipins in lung cells infected by COVID-19 do 

not correspond to any concomitant increases in their concentrations in the circulation 

[40]. Indeed, these lipids are transported in plasma associated, mainly, with high-

density lipoproteins from which they can be degraded by the antioxidant enzyme 

paraoxonase-1 [24,41].  

Although the alterations in the lipid signature of COVID-19-positive patients are 

fairly unambiguous when compared to healthy subjects, COVID-19-negative patients 

presented similar alterations, as well. This finding suggests that these alterations were 

not specific to SARS-CoV-2 infection but, rather, are common to a multitude of 

infectious/inflammatory processes. For this reason, we compared the lipidomic 

signature of the COVID-19-positive patients with that of the COVID-19-negative 

patients. One alteration in particular was the significant difference in the circulating 
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levels of PC and LPC. Several studies have proposed a role of these molecules in 

COVID-19 infection, but the results published are far from consistent. Three studies 

had showed a decrease in plasma PC and an increase in LPC levels in COVID-19-positive 

patients compared to healthy subjects [42-44] while others showed that both 

phospholipids decreased [45,46], or even that the concentrations of PC increased [14] 

and those of LPC decreased [47]. We found a decrease in the serum concentration of 

LPC 22:6 and an increase in that of PC 36:1 and, hence, the ratio between the two 

phospholipids discriminated fairly well between positive and negative patients, and 

with excellent diagnostic accuracy. In addition, Volcano plots identified PC 36:5 as one 

of the lipid species that was most strongly increased when comparing positive vs. 

negative patients. These results agree with those reported in Calu-3 cells, where an 

increase in PC synthesis was observed when the cells were infected with SARS-CoV-2 

[48]. Differences between the characteristics of the patient groups studied can 

probably explain this discrepancy between different authors’ findings. Thus, some 

studies have been performed in severely affected patients with pneumonia [44] or 

critically ill [45], others in asymptomatic patients [47], and others in patients with 

various levels of severity [42-44]. Moreover, in all of them the lipidomic signatures had 

been compared with those of healthy volunteers. Our approach is unique in that we 

compared COVID-19 patients with patients with infectious/inflammatory diseases of 

origins other than COVID-19 infection.  

Several factors could influence plasma PC and LPC concentrations. For example, 

both are key components of cell membranes and lipoproteins. Low plasma levels of 

these compounds may be explained as resulting from liver impairment in patients with 

severe COVID-19, while their increase would suggest increased activity of 

phospholipase A2 [48]. Alterations in PC and LPC levels have been related to disease 

severity because of the roles that these lipids play in the inflammatory response [49]. 

 Another alteration we observed in the COVID-19-positive patients when 

compared with the COVID-19-negative patients was a decrease in the concentrations 

of secondary bile acids, mainly deoxycholic acid and ursodeoxycholic/hyodeoxycholic 

acid; products of metabolism in the human gut microbiome. Our results are in 

accordance with those reporting that the fecal microbiome diversity is decreased in 

COVID-19 patients [50] and SARS-CoV-2-infected primates [17]. Moreover, decreased 
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plasma deoxycholic concentrations have been reported in severe COVID-19 patients 

compared to those with milder forms of the disease [51]. Inflammation caused by lung 

infection can disrupt the gut barrier integrity and increase the permeability to gut 

microbes and microbial products. This microbial translocation can exacerbate 

inflammation resulting from positive feedback. Further, microbial translocation may 

also modulate the circulating levels of gut microbiota-associated products such as 

secondary bile acids. As such, the circulating levels of these compounds would reflect 

the functional status of the gut and the metabolic activity of its microbiota [52]. Also, 

they are biologically active molecules that regulate several immunological functions, 

including inflammatory responses. Indeed, ursodeoxycholic acid has antioxidant, anti-

inflammatory, anti-apoptotic, and immunomodulatory properties [16]. However, a 

disruption in the interaction between the gut and the lung has been related to 

respiratory tract diseases with causes other than COVID-19 [53], which suggests that 

secondary bile acid measurements are only useful when comparing COVID-19 infected 

patients and patients with non-respiratory inflammatory/infectious diseases. 

 We did not find any significant difference in the lipidomic signature of patients 

who survived and those who did not, nor with admission to the ICU, nor in the clinical 

prognosis. In this sense we differ from earlier studies, albeit the published information 

is scarce. For example, Siendelar et al. [49] found that a panel of 22 metabolites 

(including PC and LPC), predicted disease severity (as measured as a need for ICU 

admission). Giron et al. [51] reported that alterations in secondary bile acid levels, 

resulting from disrupted crosstalk between gut and lung, are associated with ICU 

admission. The reasons for these discrepancies are purely speculative. Plausible 

explanations could be the heterogeneity of the disease itself, the different levels of 

severity and, as well, the associated comorbidities in the groups of patients studied by 

the different authors. 

We are unable to provide realistic explanations regarding the extent to which 

variations in the serum lipidome reflect alterations in the affected tissues. Lipid 

metabolism is complex and can be affected by multiple factors. In particular, it is 

difficult to discern from measurements made in single plasma samples which tissue is 

affected in specific disease and what is the mechanism underlying the alteration [54]. 

However, some interesting hypotheses can be formulated. For example, the lipidome 
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of the different types of lung cells in humans has been characterized [55], and 

significant variations have been found in different lipid subclasses and, in particular, in 

the length of the fatty acid chains. Thus, lung immune cells are relatively richer in long-

chain TG that are supposed to have a regulatory role in the immune response, as signal 

molecules. Indeed, long-chain TG are a source of polyunsaturated fatty acids that, due 

to the action of oxidative stress, can give rise to bioactive lipid mediators that regulate 

inflammation and the immune response [56,57]. Our study found a significant, and 

very relevant, increase in serum long-chain TG concentrations in COVID-19-positive 

compared with COVID-19-negative patients. TG are carried in the circulation packed in 

the very-low density lipoproteins (VLDL), and studies agree in that the levels of 

triglycerides, VLDL, and polyunsaturated fatty acids are increased in COVID-19 and 

Ebola virus disease [23,58-60]. Therefore, this elevation in long-chain TG 

concentrations could be related to the immune response, although the mechanisms 

behind its deregulation are not well elucidated.  

In summary, lipidomics and machine learning provide cost- and time-effective 

biomarker detection for COVID-19 infection. They define altered biochemical pathways 

and possible therapeutic targets. We identified CAR, LPE, arachidonic acid and 

oxylipins as the most altered parameters in COVID-19 patients compared to healthy 

volunteers. However, our study is also a cautionary note in that it shows these 

alterations to be not confined to COVID-19, and appear to occur in other diseases with 

an infectious/inflammatory component. We also identified long-chain TG, PC36:5, 

LPC22:6-sn2, PC36:1 and secondary bile acids as the most altered parameters when 

comparing COVID-19-positive versus COVID-19-negative patients. These lipid 

alterations highlight the options of continuing to treat these patients post-discharge 

from hospital. Given the pro-atherogenic role of some of these lipid species, follow-up 

treatment could include lifestyle modifications and lipid-lowering drugs. Moreover, we 

found that arachidonic acid and the ratio between LPC22:6-sn2 and PC36:1 show an 

excellent diagnostic accuracy (AUC from the ROC curves >0.95) in discriminating 

COVID-19-positive from healthy subjects and COVID-19-negative patients, respectively.  

Our study has several limitations: Firstly, the number of cases studied is small, 

especially in the groups of healthy volunteers and COVID-19-negative patients. All of 

our patients were hospitalized and, therefore, we do not know the degree of alteration 
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of the lipid signature in COVID-19-positive patients who are asymptomatic or have 

mild symptoms. The COVID-19-negative patients were a heterogeneous group, with 

different types of underlying diseases, albeit they enabled us to identify specific 

alterations of COVID-19 or, at least, of severe respiratory diseases. Finally, our semi-

targeted approach allowed us to measure accurately those species of analytes for 

which we had standards. However, the accuracy of measurements of the rest of the 

species are, inevitably, somewhat lower. Nevertheless, our systematic investigation 

showed that the integration of lipidomics with machine learning algorithms can 

increase the understanding of COVID-19 pathophysiology and, as such, facilitate more 

effective clinical decision making. 
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Figure legends 

Fig. 1. Lipid signatures differentiate COVID-19 positive and COVID-19-negative patients 

from healthy individuals. (A): Volcano plots representing the log fold-change of lipid 

species in COVID-19-positive (upper panel) and COVID-19-negative (lower panel) 

patients relative to the control group. (B): Heatmap showing the 15 most relevant lipid 

species in the control group (blue), COVID-19-negative (yellow) and COVID-19-positive 

(red) patients. (C): From left to right: Principal Component Analysis (PCA) clustering of 

the COVID-19-positive patients and the control group; Principal Least Square 

Discriminant Analysis (PLS-DA) clustering the COVID-19-positive patients and the 

control group; Variable Importance in Projection (VIP) score identifying 9/13-HODE and 
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15-HETE as the most relevant parameters discriminating between COVID-19-positive 

patients and the control group. (D): From left to right: PCA clustering the COVID-19-

negative patients and the control group; PLS-DA clustering the COVID-19-negative 

patients and the control group; VIP score identifying 9/13-HODE and 15-HETE as the 

most relevant parameters discriminating between COVID-19-negative patients and the 

control group. In 3-dimensional plots of PCA and PLS-DA, each ball represents a patient, 

and positions depend on differences in lipid concentrations. Axes are formed by 

different combinations of variables, and the percentages represent the proportion of 

variance that can be explained. PCA is a non-supervised test and PLS-DA is a supervised 

analysis.  

Acronyms: CAR: Acylcarnitine; DHEA: dehydroepiandrosterone; DHOME: 

dihydroxyoctadecenoic acid;  HDHA: hydroxydocosahaxaenoic aid; HETE: 

hydroxyeicosatetraenoic acid; HODE: hydroxyoctadecadienoic acid; LPC: 

lysophosphatidylcholine; LPE: lysophosphatidylethanolamine; TG: triglyceride. 

 

Fig. 2. Enrichment analysis showing the most severely affected biochemical pathways 

in COVID-19-positive patients (A) and COVID-19-negative patients (B) compared with 

the control group.  

 

Fig. 3. Identification of biomarkers for infectious/inflammatory processes. (A): Receiver 

Operating Characteristics plot of Monte Carlo models corresponding to the 

combination of 5 to 100 variables. (B): Confusion matrix of the generated 100-variable 

model. (C): Relative importance of the different variables chosen by the model. (D) 

Serum arachidonic acid concentrations in the COVID-19-positive and COVID-19-

negative patients and the control group. (D): Receiver Operating Characteristics plots 

of the measured arachidonic acid in discriminating between the selected groups. 

Acronyms: AUC: Area under the curve; CAR: acylcarnitine; DHEA: 

dehydroepiandrosterone; HDHA: hydroxydocosahaxaenoic aid; HETE: 

hydroxyeicosatetraenoic acid; HODE: hydroxyoctadecadienoic acid; LPC: 

lysophosphatidylcholine; THOME: trihydroxyoctadecenoic acid.  
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Fig. 4. Lipid signatures differentiate between COVID-19-positive and COVID-19-

negative patients. (A): Volcano plot representing the log fold-change of lipid species in 

COVID-19-positive with respect to COVID-19-negative patients. (B): Principal 

Component Analysis (PCA) clustering the COVID-19-positive and the COVID-19-

negative patients. (C): Principal Least Square Discriminant Analysis (PLS-DA) clustering 

the COVID-19-positive and the COVID-19-negative patients. The Variable Importance in 

Projection (VIP) score identified deoxycholic and ursodeoxycholic/hyodeoxycholic acids 

as highly relevant parameters in the discrimination between both groups of patients. 

(D): Heatmap. (E): Serum concentrations of the selected lipid species in COVID-19- 

positive and COVID-19-negative patients, and Receiver Operating Characteristics plot 

of the ratio between them. In 3-dimensional plots of PCA and PLS-DA, each ball 

represents a patient, and position depends on differences in lipid concentrations. Axes 

are formed by different combination of variables, and percentages represent the 

proportion of variance that can be explained. PCA is a non-supervised test and PLS-DA 

is a supervised analysis. 

Acronyms: AUC: Area under the curve; CAR: acylcarnitine; LPC: 

lysophosphatidylcholine;  PC: phosphatidylcholine; TG: triglyceride. 

 

Fig. 5. Relationships between the lipidomics signature and the clinical characteristics of 

COVID-19-positive patients. (A): Heatmap showing the variations in serum lipid 

concentrations in relation to comorbidities. (B): K-means clustering of patient group 

according to their similarities in the circulating lipidome. Each individual patient is 

represented by a point with a different color depending on whether or not they had 

the selected characteristic.  

Acronyms: CAR: acylcarnitines; CE: cholesterol esters; DG: diglycerides; FA: fatty acids; 

LPC: lysophosphatidylcholines; LPE: lysophosphatidylethanolamines; PC: 

phosphatidylcholines; SM: sphingomyelins; TG: triglycerides. 
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Table 1. Demographic and clinical characteristics of the patients and the healthy subjects 
 
 

 
 

*
 
COVID-19 positive patients with respect to healthy subjects; † COVID-19 positive patients with respect 

to COVID-19 negative patients. Statistical analyses performed by the Student’s t test (quantitative) or 

the -square test (qualitative). Results are given as medians and 95% CI or as numbers and percentages. 

ACEIs: Angiotensin converting enzyme inhibitors; ARAs, Angiotensin II receptor antagonists; NFD: Non-

fatal disease; RFD: Rapidly fatal disease. UFD: Ultimately fatal disease 

 Healthy  

subjects 

n = 50 

COVID-19 

negative 

patients 

n = 45 

 

COVID-19 

positive 

patients 

n = 126 

P value * 

 

P value 
†
 

Demographic variables      

Age, years 75 (66- 84) 84 (75- 89) 
 

71 (58-83) < 0.001 < 0.001 

Sex, male  38 (76.0) 30 (66.7) 68 (54.8) 
 

0.218 0.112 

Smoking, n (%) 19 (38.0) 16 (35.6) 6 (4.8) 
 

0.834 0.076 

Alcohol intake, n (%) 28 (56.0) 7 (15.5) 
 

6 (4.8)  < 0.001 0.063 

Comorbidities      

Cardiovascular Disease, n (%) 0 18 (40) 68 (54) NA 0.075 

Type 2 Diabetes Mellitus, n (%) 0 22 (48.9) 30 (23.8) 
 

NA < 0.001 

Chronic Neurological Disease n (%),  0 0 29 (23.0) NA NA 

Chronic Kidney Disease, n (%) 0 19 (42.2) 22 (17.5) 
 

NA 0.001 

Chronic Lung Disease, n (%) 0 0 18 (14.3) NA NA 

Cancer, n (%) 0 17 (37.8) 16 (12.7) 
 

NA < 0.001 

Chronic Liver Disease, n (%) 0 0 1 (0.8) NA NA 

McCabe  

index 

RFD, n (%)  

NA 

10 (22.2) 7 (5.6)    

UFD, n (%) 19 (42.2) 31 (24.6) NA < 0.001 

NFD, n (%) 16 (35.6) 88 (69.8)   

Charlson 

index 

No comorbidity, n (%) NA 10 (22.2) 83 (65.9)  NA < 0.001 

Low comorbidity, n (%) 18 (40.0) 29 (23.0)   

High comorbidity, n (%) 17 (37.8) 14 (11.1)   

Medications      

Oral antidiabetics, n (%) NA 19 (42.2) 37 (29.4) NA 0.083 

Statins, n (%) NA 16 (35.6) 44 (34.9) NA 0.538 

ACEIs, n (%) NA 14 (31.1) 24 (27.0) NA 0.364 

ARAs, n (%) NA 12 (26.7) 21 (16.7) NA 0.109 

Insulin, n (%) NA 9 (20.0) 28 (22.2) NA 0.468 
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Highlights 

 COVID-19 alters lipid metabolism of the infected host 

 We evaluated serum lipidome in controls and patients with or without COVID-19  

 A lipidomic signature differentiated patients from controls 

 A lipidomic signature differentiated COVID-19 positive from negative patients  
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